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Abstract

This paper considers a generalization of the Gaussian random field with
covariance function of the Whittle–Matérn family. Such a random field can
be obtained as the solution to the fractional stochastic differential equation
with two fractional orders. Asymptotic properties of the covariance functions
belonging to this generalized Whittle–Matérn family are studied, which are
used to deduce the sample path properties of the random field. The Whittle–
Matérn field has been widely used in modeling geostatistical data such as sea
beam data, wind speed, field temperature and soil data. In this paper we show
that the generalized Whittle–Matérn field provides a more flexible model for
wind speed data.

PACS number: 02.50.Ey

1. Introduction

Random fields play an important role in geostatistics, which deals with problems stretching
from resource evaluation, such as the estimation of ore resources in mining and oil deposits
in oil exploration, pollution evaluation in environmental sciences to hydrology, meteorology,
agriculture, etc [1–3]. For example, environmental resource models carry out spatial statistical
analysis in the quantity of resources available such as the volume of available water, forest, etc,
or their quality such as concentration of contaminants in air, water or soil samples. Random
fields and their covariance functions or equivalently their variograms are used widely in the
modeling of observed spatial data as these data are likely to be spatially dependent. The
earlier developments of the subject include work by Whittle [4, 5], Matérn [6, 7], Tatarski [8],
Matheron [9] and others. The Gaussian random fields defined using the covariance functions
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from the Whittle–Matérn (WM) covariance class are widely used to model isotropic spatial
processes in two and three dimensions.

The WM class of covariance functions [10–14] has recently received considerable interest
in geostatistics due to its great flexibility for modeling the spatial variations, in particular its
ability to model behaviors of empirical variogram near the origin. Unlike other popular
covariance models, the WM model has a parameter that characterizes the smoothness of the
associated random field. Due to this reason, Stein [15] strongly recommended the WM class
for the modeling of spatial covariance.

A special case of the WM model was first obtained by Whittle [4], who showed that a
Gaussian random field with covariance function belonging to the WM class can be obtained as
a solution to a stochastic differential equation. The general form of the WM model was given
by Matérn [6] and Tatarski [8], and was also considered by Matheron [9] and Shkarofsky [16].
It can be associated with the von Kármán spectrum [17, 18] in the modeling of wind speed. A
comprehensive historical account on the WM class was given by Guttorp and Gneiting [19],
who first called such a class of covariance functions the WM covariance family, but they later
changed it to the Matérn covariance family [20].

Recall that the smoothness of a random field is characterized by the fractal dimension, a
local property which is determined by the asymptotic properties of the covariance near zero
lag and its value depends on the smoothness parameter of the WM covariance. On the other
hand, the strength of the spatial correlation is determined by the scale parameter and for
large time lag it decays exponentially. In this paper, we propose a new generalization of the
WM covariance class with an additional parameter which plays the role of scale or memory
parameter, and the spatial correlation strength for large time lag now varies hyperbolically,
with exponential decay as a special case.

In the following section we recall some basic facts on the WM covariance class and
the random field associated with it. This will be followed by the introduction of the GWM
covariance class and the corresponding random field. The asymptotic properties of the GWM
covariance function are studied in section 3. Based on these properties we are able to obtain
the fractal dimension of the graph of the random field in the GWM model. This random
field satisfies a weaker self-similar property called local self-similarity, and it is short range
dependent. Simulations of the GWM covariance function and the random field (in two
dimensions) are given. In the subsequent section, the GWM process is applied to model wind
speed and compared to the model provided by the WM process. Other possible generalizations
and applications of the GWM random field are discussed in the concluding section.

2. Generalized Whittle–Matérn model

The WM class of covariance functions is given by [1–3, 15]:

C(t) = 21− n
2 −γ

π
n
2 �(γ )

( |t|
λ

)γ− n
2

Kγ− n
2
(λ|t|), (1)

where Kν(z) is the modified Bessel function of second kind (or Macdonald function),

t ∈ Rn, |t| =
√

t2
1 + · · · + t2

n is the Euclidean norm of t, λ > 0 is a scale parameter controlling
the spatial range of the covariance and ν = γ − (n/2) > 0 is the smoothness parameter
governing the level of smoothness of the associated Gaussian random field Y (t). Note that
the WM covariance (1) has the same functional form as the characteristic function of the
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multivariate t-distribution [21]. The spectral density of Y (t) is given by the Fourier transform
of (1):

S(ω) = F(C(t)) = 1

(2π)n

∫
Rn

C(t) e−iω·t dnt = 1

(2π)n

1

(|ω|2 + λ2)γ
.

The Gaussian random field Y (t) with covariance (1) can be obtained as the solution to the
following fractional stochastic differential equation [4]:

(−� + λ2)
γ

2 Y (t) = η(t), (2)

where � = ∂2

∂t2
1

+ · · · + ∂2

∂t2
n

is the n-dimensional Laplacian, and η(t) is the standard white noise
defined by

〈η(t)〉 = 0, 〈η(t)η(s)〉 = δ(t − s). (3)

One early generalization of the WM family of covariance functions was proposed by
Shkarofsky [16]. Based on the argument that a covariance function for turbulence needs
to have no cusp, it is required to have zero derivative at the origin and a second derivative that
is finite and negative. In order to satisfy these requirements, he generalized (1) to a covariance
with two complementary parameters

C(t) =
(
λ
√

|t|2 + ξ 2
)ν

Kν

(
λ
√

|t|2 + ξ 2
)

(λξ)νKν(λξ)
. (4)

Clearly, up to constants, (4) reduces to the covariance in WM class (1) when ξ → 0+. There
also exist generalizations of the WM class to a non-stationary class of covariance functions
that allow for anisotropy, one such generalization is [22]:

C(t1, t2) =
(

λ(t1 + t2)

2

)−ν

Kν

(
2

√
λ(t1 + t2)

2

)
. (5)

In view of the wide applications of fractal operators in physics [23], we propose another
generalization of the WM class of the covariance function by extending the fractional stochastic
differential equation (2) to one with two fractional orders

[(−�)α + λ2]
γ

2 Yα,γ (t) = η(t), (6)

with λ, γ > 0 and α ∈ (0, 1], and the Riesz fractional derivative D2α = (−�)α is defined by

D2αf = (−�)αf = F−1{|ω|2αF [f ](ω)} (7)

or

(FD2αf )(ω) = |ω|2α(F [f ])(ω). (8)

One can regard the fractional operator [(−�)α + λ2]
γ

2 as a ‘shifted’ Riesz derivative and it has
formally the series representation:

[(−�)α + λ2]
γ

2 =
∞∑

j=1

(
γ /2
j

)
λγ−2j (−�)αj . (9)

See [26] for a more rigorous treatment of this operator based on hypersingular integrals. Now
by using

([(−�)α + λ2]
γ

2 f )(t) = F−1([|ω|2α + λ2]
γ

2 F [f ](ω))(t), (10)

the solution to (6) is found to be

Yα,γ (t) = 1

(2π)
n
2

∫
Rn

eit ·ωη̂(ω)

(|ω|2α + λ2)
γ

2

dnω, (11)
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Figure 1. Simulations of the Whittle–Matérn field Yα,γ (t1, t2) for different values of α and γ .

where η̂(ω) = F [η](ω) is the Fourier transform of the white noise. For convenience, we call
Yα,γ (t) the GWM (generalized Whittle–Matérn) field. The representation (11) shows that the
GWM field Yα,γ (t) is a centered Gaussian field with covariance function

Cα,γ (t − t′) = Cα,γ (t, t′) = 〈Yα,γ (t)Yα,γ (t′)〉 = 1

(2π)n

∫
Rn

eiω·(t−t′)

(|ω|2α + λ2)γ
dnω. (12)

From this, we see that Yα,γ (t) is an isotropic field with spectral density

Sα,γ (ω) = 1

(2π)n

1

(|ω|2α + λ2)γ
. (13)

Note that in the case of α = 1, γ > 0, the field Y1,γ (t) is sometimes called Bessel field by
some authors [27–30] based on the fact that the operator (−� + λ2)γ/2 is closely related to the
Bessel potential with the WM covariance (1) equal to the Bessel kernel up to a multiplication
constant [24]. Since the function (|ω|2α + λ2)−γ /2 is in L2(R) if and only if αγ > n/2, the
field Yα,γ (t) is only well defined by (11) as an ordinary random field when αγ > n/2. When
αγ � n/2, Yα,γ (t) can be regarded as a generalized random field over the Schwarz space of
test functions [31]. In the following, when we study the properties of the random field Yα,γ (t),
we restrict to the case αγ > n/2. The two-dimensional GWM field with selected values
of α and γ is simulated in figure 1. In the following section we shall study the asymptotic
properties of the covariance and the sample path properties of Yα,γ (t).
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Here we would like to remark that when n = 1 and α = 1, the GWM process Y1,γ (t) is
also called the Weyl fractional Ornstein–Uhlenbeck process or the Weyl fractional oscillator
process [32, 33], which can be considered as a generalization of an ordinary oscillator process
driven by white noise.

3. Asymptotic properties of the covariance function

When α = 1, the covariance of GWM field (12) C1,γ (t) reduces to the WM class given by (1).
However, (12) in general does not have a closed analytic form. It is interesting to note that
the spectral density of the GWM field has the same functional form as both the characteristic
function of generalized multivariate Linnik distribution [34, 35] and the covariance function
of the generalized Cauchy class in Rd [36, 37]. Thus the covariance of the GWM field,
the generalized multivariate Linnik distribution and the spectral density of the random field
belonging to the generalized Cauchy class all should have the same analytic and asymptotic
properties. These properties have been considered for the generalized Linnik distribution in
R, and the multivariate Linnik distribution for the special case with α ∈ (0, 1) and γ = 1, and
for the spectral density of the random field of the generalized Cauchy class by Kotz et al [34]
and Ostrovskii [35], and Lim and Teo [37], respectively. Thus the results obtained in [34, 35,
37] can be translated directly to the covariance of the GWM field.

For general α and γ , we can use a theorem of Bochner [38] which says that being an
isotropic covariance function, Cα,γ (t) has a spectral representation given by

Cα,γ (t) = (2π)
n
2

∫ ∞

0

J n−2
2

(ω|t|)
(ω|t|) n−2

2

Sα,γ (ω)ωn−1 dω

= |t| 2−n
2

(2π)
n
2

∫ ∞

0

J n−2
2

(ω|t|)
(ω2α + λ2)γ

ω
n
2 dω. (14)

Here Jν(z) is the Bessel function of the first kind of order ν. Now the result on a representation
of the spectral density of the random field of the generalized Cauchy class in [37] can be applied
and we find that for α ∈ (0, 1), the covariance function Cα,γ (t) has another representation
given by

Cα,γ (t) = − |t| 2−n
2

2
n−2

2 π
n+2

2

Im
∫ ∞

0

Kn−2
2

(u|t|)
(eiπαu2α + λ2)γ

u
n
2 du. (15)

In fact, for all α ∈ (0, 1) and γ > 0, the integral in (15) is convergent when t �= 0. Together
with (1), we find that for αγ � n/2, Yα,γ (t) can be considered as a random field with infinite
variance and with covariance given by (15) if α ∈ (0, 1); and by (1) if α = 1. Since

Kν(z) ∼
√

π

2z
e−z as z → ∞,

we can use (15) to effectively calculate the numerical values of Cα,γ (t). On the other hand,
we can also use (15) to study the large |t| behavior of the covariance function Cα,γ (t) when
α ∈ (0, 1). More precisely, using the formula

1

(1 + z)γ
=

∞∑
j=0

�(γ + j)

�(γ )

(−1)j

j !
zj ,

and the formula∫ ∞

0
xμKν(x) dx = 2μ−1�

(
1 + μ + ν

2

)
�

(
1 + μ − ν

2

)
5
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([39], #6.561, no. 16), we find that if α ∈ (0, 1), then when |t| → ∞, we have

Cα,γ (t) = − |t|−n

2
n−2

2 π
n+2

2

Im
∫ ∞

0

Kn−2
2

(u)(
eiπα u2α

|t|2α + λ2
)γ u

n
2 du

∼ − |t|−n

2
n−2

2 π
n+2

2

Im

⎧⎨⎩
∞∑

j=0

�(γ + j)

�(γ )

(−1)j

j !
λ−2γ−j eiπαj |t|−2αj

∫ ∞

0
u2αj+ n

2 Kn−2
2

(u) du

⎫⎬⎭
∼ 1

π
n+2

2

∞∑
j=1

�(γ + j)

�(γ )

(−1)j−1

j !
�(αj + 1)�

(
αj +

n

2

)
22αjλ−2γ−j sin(παj)|t|−2αj−n.

(16)

In particular, the leading term of Cα,γ (t) when |t| → ∞ is

Cα,γ (t) ∼ 22αλ−2γ−1γ

π
n+2

2

�(α + 1)�
(
α +

n

2

)
sin(πα)|t|−2α−n. (17)

Note that the order of the leading term |t|−2α−n only depends on α. In other words, the large
time asymptotic behavior of the covariance function varies as |t|−2α−n and does not depend
on γ . When α = 1, we cannot use (15). However, we can obtain the large-|t| behavior of
C1,γ (t) from the explicit formula (1) and the asymptotic formula for Kν(z) ([39], #8.451,
no. 6) which give

C1,γ (t) ∼ 2
1−n

2 −γ

π
n−1

2 �(γ )
e−λ|t|

∞∑
j=0

{
�
(
γ + j − n−1

2

)
�
(
γ − j − n−1

2

) 1

2j j !
λ−j−γ + n−1

2 |t|−j+γ− n+1
2

}
. (18)

Note that in this case, C1,γ (t) decays exponentially and the leading term is

C1,γ (t) ∼ 2
1−n

2 −γ λ−γ + n−1
2

π
n−1

2 �(γ )
e−λ|t||t|γ− n+1

2 . (19)

To study the local properties of the GWM field Yα,γ (t) such as Hölder continuity, local
asymptotic self-similarity and Hausdorff dimension of the graph, we need to study the small-|t|
behavior of the variogram

σ 2
α,γ (t) := 〈[Yα,γ (t) − Yα,γ (0)]2〉 (20)

of the increment field Yα,γ (t) − Yα,γ (0). Note that

σ 2
α,γ (t) = 2(Cα,γ (0) − Cα,γ (t)), (21)

and the variance of Yα,γ (t) is given explicitly by

〈[Yα,γ (t)]2〉 = Cα,γ (0) = 1

(2π)n

∫
Rn

1

(|ω|2α + λ2)γ
dnω

= 1

2n−1π
n
2 �

(
n
2

) ∫ ∞

0

ωn−1 dω

(ω2α + λ2)γ

= λ
n
α
−2γ

2nπ
n
2 α�

(
n
2

) �
(
γ − n

2α

)
�
(

n
2α

)
�(γ )

. (22)

The |t| → 0 asymptotic properties of σ 2
α,γ (t) depend on the arithmetic nature of α and

γ . To explore the leading behavior of σ 2
α,γ (t) as |t| → 0, we have to discuss the cases

αγ ∈ (
n
2 , n+2

2

)
, αγ = n+2

2 and αγ > n+2
2 separately. From (21) and (14),

σ 2
α,γ (t) = −2

(2π)
n
2

∫ ∞

0

(
J n−2

2
(k|t|)

(k|t|) n−2
2

− 1

2
n−2

2 �
(

n
2

)) kn−1

(k2α + λ2)γ
dk. (23)
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Case I. When αγ ∈ (
n
2 , n+2

2

)
, by making a change of variable k 
→ k/|t|, (23) is transformed

to

σ 2
α,γ (t) = −2|t|2αγ−n

(2π)
n
2

∫ ∞

0

(
J n−2

2
(k)

k
n−2

2

− 1

2
n−2

2 �
(

n
2

)) kn−1

(k2α + λ2|t|2α)γ
dk. (24)

When |t| → 0, the integral

I (t) =
∫ ∞

0

(
J n−2

2
(k)

k
n−2

2

− 1

2
n−2

2 �
(

n
2

)) kn−1

(k2α + λ2|t|2α)γ
dk (25)

approaches a finite limit given by

I =
∫ ∞

0

(
J n−2

2
(k)

k
n−2

2

− 1

2
n−2

2 �
(

n
2

)) kn−2αγ−1 dk.

Using the regularization method (see the appendix), it can be shown that

I = �
(

n
2 − αγ

)
22αγ− n

2 �(αγ )
. (26)

Therefore, as |t| → 0,

σ 2
α,γ (t) = − 1

22αγ−1π
n
2

�
(

n
2 − αγ

)
�(αγ )

|t|2αγ−n + o(|t|2αγ−n). (27)

Note that when α ∈ (
n
2 , n+2

2

)
, the leading order of σ 2

α,γ (t) depends on α and γ only in the
combination αγ . By letting γ = γ ′/α gives αγ = γ ′. Hence the |t| → 0 asymptotic
properties of σ 2

α,γ (t) vary as |t|2γ ′−n which is independent of α.

Case II. When αγ > n+2
2 , using the fact that

Jν(z) = zν

2ν

∞∑
j=0

(−1)j z2j

22j j !�(ν + j + 1)
,

([39], #8.402), we find that as |t| → 0,
J n−2

2
(k|t|)

(k|t|) n−2
2

− 1

2
n−2

2 �
(

n
2

) = − (k|t|)2

2
n+2

2 �
(

n+2
2

) + o(|t|2). (28)

Therefore, (23) gives

σ 2
α,γ (t) = |t|2

2nπ
n
2 �

(
n+2

2

) ∫ ∞

0

kn+1 dk

(k2α + λ2)γ
+ o(|t|2)

= λ−2γ + n+2
α

2n+1π
n
2 α�

(
n+2

2

) �
(
γ − n+2

2α

)
�

(
n+2
2α

)
�(γ )

|t|2 + o(|t|2) (29)

as |t| → 0.

Case III. In the limiting case αγ = n+2
2 , equation (24) gives

σ 2
α,γ (t) = −2|t|2

(2π)
n
2

∫ ∞

0

(
J n−2

2
(k)

k
n−2

2

− 1

2
n−2

2 �
(

n
2

)) kn−1

(k2α + λ2|t|2α)γ
dk. (30)

However, now the integral

I (t) =
∫ ∞

0

(
J n−2

2
(k)

k
n−2

2

− 1

2
n−2

2 �
(

n
2

)) kn−1

(k2α + λ2|t|2α)γ
dk

7
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does not have a finite limit when t → 0. In the appendix, we show that

I (t) = − 1

2
n+2

2 �
(

n+2
2

) log
1

|t| + A + o(1) (31)

for some constant A. Therefore, as |t| → 0,

σ 2
α,γ (t) = 1

2nπ
n
2 �

(
n+2

2

) |t|2 log
1

|t| + O(|t|2). (32)

From (27), (29) and (32), we see that the behavior of the leading order term of σ 2
α,γ (t) when

|t| → 0 depends on γ ′ − (n/2). If γ ′ − (n/2) ∈ (0, 1), the leading order term is of order
|t|2γ ′−n which depends on the magnitude of γ ′ − (n/2). If γ ′ − (n/2) > 1, then the leading
order term is of order |t|2, which loses dependence on γ ′ − (n/2). In the borderline case
γ ′ − (n/2) = 1, the leading order term is of order |t|2 log(1/|t|).

The graphs of Cα,γ (|t|) when |t| is large and σ 2
α,γ (|t|) when |t| is small for some particular

values of α and γ are given in figures 2 and 3, respectively.
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4. Sample path properties of the GWM field Y α,γ(t)

Some basic sample path properties of the GWM field will be considered in this section.

4.1. Continuity and differentiability

When αγ > n/2 for which the field Yα,γ (t) is defined as an ordinary random field, the
covariance function Cα,γ (t) (12) is continuous at t = 0. By a well-known result (see, e.g.,
[40]), this implies that the field Yα,γ (t) is mean square (m.s.) continuous. One may then
proceed to investigate the differentiability of the field Yα,γ (t). It turns out that Yα,γ (t) is not
always differentiable. In fact, a well-known result (see, e.g., [40]) states that the m.s. first
partial derivative ∂X(t)/∂tj of a stationary random field X(t) exists if and only if the partial
derivative ∂2C(t)/∂t2

j exists at t = 0, where C(t) denotes the covariance function of X(t).
From our result in the previous section, we find that as t → 0,

C(t) − C(0) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

B1|t|2αγ−n + o(|t|2αγ−n), if αγ ∈
(

n

2
,
n + 2

2

)
,

B2|t|2 log
1

|t| + O(|t|2), if αγ = n + 2

2
,

B3|t|2 + o(|t|2), if αγ >
n + 2

2
,

(33)

for some constants B1, B2, B3. It is easy to check that for the radial function f (t) = |t|h,
the second partial derivative ∂2f (t)/∂t2

j exists at t = 0 if and only if h � 2. Therefore, we

conclude that the mean square partial derivatives of Yα,γ (t) exist if and only if αγ > n+2
2 , with

a representation given by

∂Yα,γ

∂tj
(t) = i

(2π)
n
2

∫
Rn

ωj eit·ωη̂(ω)

(|ω|2α + λ2)
γ

2

dnω. (34)

In fact, we can argue analogously that the m.s. j th order partial derivatives of Yα,γ (t) exist if
and only if αγ > (n/2) + j .

For αγ ∈ (
n
2 , n+2

2

)
, the field Yα,γ (t) is not differentiable. Therefore, we would instead

investigate the order of continuity of Yα,γ (t). Recall that a function f is said to be Hölder
continuous of order h ∈ (0, 1] if and only if

|f (t′) − f (t)| � K|t′ − t|h ∀ t′, t, (35)

for some constant K. The sum of all h where f is Hölder continuous of order h is called the
Hölder exponent of f . For a centered isotropic Gaussian random field X(t), a concept of
the index-β field was introduced by Adler [40] which can be used to characterize the Hölder
exponent of the sample paths of X(t). More precisely, a theorem states that if X(t) is an
index-β field, then with probability one, its sample paths have Hölder exponent equal to β,
where X(t) is called the index-β field if and only if

β = sup{β̃ : σ(t) = o(|t|β̃ ) as |t| → 0}
= inf{β̃ : |t|β̃ = o(σ (t)) as |t| → 0}. (36)

Here σ(t) is defined as the square root of the variogram of X(t), i.e., σ(t) =√
〈[X(t) − X(0)]2〉. For the field Yα,γ (t) we are considering, it is immediate to conclude

that from (27), (29) and (32) that if αγ ∈ (
n
2 , n+2

2

)
, then Yα,γ (t) is an indexed (αγ − (n/2))

field; whereas if αγ � n+2
2 , then Yα,γ (t) is an index-1 field. Therefore, we have for

αγ ∈ (
n
2 , n+2

2

)
, the sample paths of Yα,γ (t) is Hölder continuous of order αγ − (n/2)

9
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with probability one. For αγ > n+2
2 , it can be shown by considering the gradient

field ∇Yα,γ (t) = (∂Yα,γ (t)/∂t1, . . . , ∂Yα,γ (t)/∂tn) that the sample paths of Yα,γ (t) are
differentiable.

4.2. Fractal dimension

For a non-differentiable function f , the ordinary definition of dimension, which is always a
non-negative integer, is inadequate to measure the dimensionality of its image or graph. A
more appropriate definition of the dimension is called fractal of Hausdorff dimension which
can be any non-negative real number. Definition and basic properties of fractal dimension can
be obtained in the book [41]. Here we would like to make use of the following result. For an
index-β field in Rn, with probability one, the fractal dimension of the image and graph of its
sample path are 1 and n + 1 − β, respectively. Thus, with probability one, the image of the
sample path of Yα,γ (t) always has fractal dimension one. The result is more interesting for
the fractal dimension of the graphs. If αγ ∈ (

n
2 , n+2

2

)
, then with probability one, the graph of

the sample path of Yα,γ (t) has dimension 3n
2 + 1 − αγ , a real number between n and n + 1.

However, when αγ exceeds the point n+2
2 , then with probability one, the graph of the sample

path of Yα,γ (t) always has dimension equal to n. This is reasonable since the sample path of
Yα,γ (t) becomes differentiable when αγ > n+2

2 . In fact, figure 1 shows clearly that the fractal
dimension of the graph of Yα,γ (t1, t2) depends on γ ′ = αγ .

4.3. Local self-similarity

Self-similarity is an important property of fractals. Intuitively, a field is called self-similar if
it is invariant under appropriate scaling. For a random field X(t), we say that it is self-similar
of order H if and only if for any r > 0, the law of the field X(rt) is the same as the law of the
field rHX(t). It is well known that a stationary random field cannot be self-similar [42]. In
fact, up to a constant multiplicative factor, the only H-self-similar centered Gaussian random
field with stationary increments is the fractional Lévy Brownian field BH(t) of index H with
covariance

〈BH(s)BH (t)〉 = 1
2 (|t|2H + |s|2H − |t − s|2H ). (37)

This excludes the possibility for Yα,γ (t) being a self-similar random field. However, Yα,γ (t)
satisfies a weaker self-similar property known as local self-similarity considered by Kent and
Wood [43]. A centered stationary Gaussian field is locally self-similar of order β/2 if its
covariance C(t) satisfies for |t| → 0,

C(t) = C(0) − A|t|β[1 + O(|t|δ)] (38)

with A > 0 and δ > 0. The proof of equation (27) shows that for αγ ∈ (
n
2 , n+2

2

)
,

Cα,γ (t) = Cα,γ (0) − A|t|2αγ−n + o(|t|2αγ−n+δ)

with

A = − 1

22αγ π
n
2

�
(

n
2 − αγ

)
�(αγ )

. (39)

Hence Yα,γ (t) is locally self-similar of order αγ − (n/2).
There exists an equivalent way of characterizing self-similarity at a local scale called

local asymptotical self-similarity which was first introduced for multifractional Brownian

10
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motion [44]. Recall that a random field X(t) is called locally asymptotically self-similar with
parameter H ∈ (0, 1) at a point t0 if the limit random field{

Tt0(u) = lim
ρ→0+

X(t0 + ρu) − X(t0)

ρH
,u ∈ R

n

}
(40)

exists and is nontrivial [44]. In this case, Tt0(u) is called the tangent field of X(t) at t0. It can
be directly verified that

〈[Yα,γ (t0 + ρu) − Yα,γ (t0)][Yα,γ (t0 + ρv) − Yα,γ (t0)]〉
= 1

2

(
σ 2

α,γ (ρu) + σ 2
α,γ (ρv) − σ 2

α,γ (ρ(u − v))
)
. (41)

Equation (27) then shows that for αγ ∈ (
n
2 , n+2

2

)
,

lim
ρ→0+

〈
Y (t0 + ρu) − Y (t0)

ραγ− n
2

Y (t0 + ρv) − Y (t0)

ραγ− n
2

〉
= A(|u|2αγ−n + |v|2αγ−n − |u − v|2αγ−n). (42)

Therefore, for αγ ∈ (
n
2 , n+2

2

)
, Yα,γ (t) is locally asymptotically self-similar with order

αγ −(n/2). Its tangent field at a point t0 ∈ Rn is independent of t0, and up to the multiplicative
factor 2A, the tangent is given by the fractional Lévy Brownian field BH(u) (37) of order
αγ − (n/2).

From the results on the Hölder exponent, fractal dimension and local self-similarity, it is
found that they all depend on the parameters α and γ in the combination γ ′ = αγ . They are
related to each other in such a way that if the Hölder exponent is H = min{γ ′ −(n/2), 1}, then
the fractal dimension is n + 1 − H and the order of local self-similarity is H again if H < 1.

4.4. Short range dependence

Recall that a stationary random field X(t) is said to have short range dependence (or short
memory) if the absolute value of its covariance function C(t) is integrable over Rn, that is∫

Rn
+

|C(t)| dnt < ∞.

By our result on the large |t| asymptotic behavior of Cα,γ (t) (17) and (19), we find that when
|t| → ∞, Cα,γ (t) ∼ |t|−2α−n if α ∈ (0, 1) and Cα,γ (t) ∼ e−λ|t||t|γ− n+1

2 if α = 1. Using polar
coordinates, it can be verified easily that∫

t∈Rn
+,|t|>1

|t|p dnt < ∞
if and only if p < −n. This immediately implies that Yα,γ (t) has short range dependence
for all α and γ . Moreover, for α ∈ (0, 1), the short memory exponent 2α + n depends
only on α and not on γ . Together with the result on local properties such as the Hölder
exponent, fractal dimension and local asymptotic self-similarity, this implies that the short
range dependence property and local properties of the GWM field Yα,γ (t) are characterized
separately by α and γ ′ = αγ . This should be compared to the random field with generalized
Cauchy covariance [36, 37], which is an isotropic random field with two parameters that
enables separate characterizations of long range dependence and fractal dimension.

Here we would like to remark on the Markov property for the WM field and GWM field.
In the case of the Whittle field (α = γ = 1) in n = 2 dimension, this problem has been studied
by Pitt and Robeva [45], who showed that under certain technical conditions, the sharp Markov
property is satisfied. They generalized the result to the WM field (which they called the Bessel
field), and they verified that under some technical conditions the sharp Markov property holds
for the WM field with n + 1/2 < γ < n + 1, n � 1 [28, 29]. It will be interesting to see
whether the arguments of Pitt and Robeva can be extended to the GWM field.
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Figure 4. The daily average wind speed at Roche’s Point, Ireland from 1973 to 1978.

5. Application to wind speed modeling

The WM field has been widely used in modeling [10–14] geostastical data such as sea beam
data, temperature, wind speed and soil data. In this section, we show that the GWM process
can be used to provide an alternative model for wind speed.

We analyze the average daily wind speed of Roche’s Point in Ireland from 1973 to 1978
which consists of N = 365 × 6 = 2190 data points3 (see figure 4). The Irish wind data of
12 meteorological sites from 1961 to 1978 have been analyzed by several authors [46–49]
where they were more concerned with the spatial correlation between the sites. On the other
hand, the von Kármán wind turbulence model [17, 18] proposed a model with spectral density
having the same functional form as the spectral density of the WM process.

As in [46], we consider the seasonal effect by calculating the average of the square roots
of the daily means over the 6 years for each day of the year, and then regressing the result
with a polynomial of degree 8 (see figure 5). The deseasonalized data (figure 6) are obtained
by subtracting the fitted polynomial from the square roots of daily means. It has zero mean
and is referred to as the velocity measures. To justify that the velocity measures is a short
memory process, we use the fact that a process has long memory if and only if its spectral
density diverges at ω = 0. For a discrete stationary random process Xt, t = 1, 2, 3, . . ., with
covariance C(t), an analog of spectral density is the power spectral density (PSD) defined by

PSD(ω) = 1

2π

∞∑
j=−∞

C(j) e−ijω.

It is a periodic function with period 2π and S(2π − ω) = S(ω). If Xt has an underlying
continuous process X(t) with spectral density S(ω) so that Xt = X(t) when t = 1, 2, 3, . . .,
then

PSD(ω) =
∞∑

j=−∞
S(ω − 2πj).

3 The data are obtained from Statlib (http://lib.stat.cmu.edu/datasets/) with the value for 29 February 1976 omitted.
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Figure 5. The average of the square roots of daily means over the 6 years for each day of the year
and the fitted polynomial of degree 8.
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Figure 6. The deseasonalized data (velocity measures).

There are different ways to estimate the power spectral density from a given sample
xt , t = 1, 2, . . . , N of Xt . One way is to use the periodogram method, where the estimate of
PSD(ω) is given by the periodogram

1

2πN

∣∣∣∣∣∣
N∑

j=1

xj e−iωj

∣∣∣∣∣∣
2

.

However, this method usually leads to large fluctuations. A better method which gives a
smoother estimate is introduced by Welch [50] and improved by others (see, e.g., [51]).
We estimate the PSD of the velocity measures using Welch’s method by segmenting the
data into 50% overlapping blocks of length 73 and applying the Hamming window to each
block. The resulting estimate for PSD is compared to the periodogram estimate in figure 7.
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Figure 7. The estimated power spectral density of the velocity measures and the corresponding
log–log plot using (a) periodogram method, (b) Welch’s method.

The behavior of PSD at ω ∼ 0 gives strong evidence that the velocity measures have short
memory.

In order to apply the GWM process to model the velocity measures, we consider the more
general process parametrized by the four parameters α, γ,K, �:

Ŷ K,�
α,γ (t) = KYα,γ (�t)λ=1 = K√

2π

∫ ∞

−∞

ei�tωη̂(ω)

(|ω|2α + 1)
γ

2

dω,

which has spectral density

ŜK,�
α,γ (ω) = 1

2π

K�2αγ−1

(|ω|2α + �2α)γ
= K�2αγ−1Sα,γ (ω)λ=�2α

and the covariance function

ĈK,�
α,γ (t) = K2Cα,γ (�t)λ=1.

Note that � rescales the time parameter and K rescales the data. We need to determine
the parameters α, γ,K, � so that the process Ŷ K,�

α,γ (t) gives the best model to the velocity
measures. For this purpose we use the maximum likelihood estimation (MLE) method strongly
recommended by Stein (see, e.g., [15]). Let Γ(θ) = �(α, γ,K, �) be the covariance matrix(
ĈK,�

α,γ (i − j)
)N

i,j=1. Since we assume that the velocity measure is a Gaussian process, the

probability density function for y = (y1, . . . , yN)T having mean 0 and covariance Γ(θ) is

p(y; θ) = 1

(2π)
N
2
√

det Γ(θ)
exp

(
−1

2
yT Γ(θ)−1y

)
. (43)

In the MLE method, we seek the parameters θ = (α, γ,K, �) that would maximize the
probability density function (43) with y being the observed velocity measures. Equivalently,
we have to minimize the negative log of the likelihood function

NLL(θ) = − log p(y; θ) = 1

2
yT Γ(θ)−1y +

1

2
log det Γ(θ) +

N

2
log(2π). (44)
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Table 1. The estimated parameters for the WM and GWM models.

α̃ γ̃ K̃ �̃ s̃2 ÑLL

WM model 1 1.0225 0.7857 0.7474 0.2994 1488.42
GWM model 0.5186 4.1223 1.6965 2.8250 0.2995 1487.47

Finding the minimum of the highly nonlinear function (44) with four parameters is
computationally demanding. Therefore, it is desirable to reduce the number of parameters
which has to be estimated. Note that the variance s2 of Ŷ K,�

α,γ (t) is given by

s2 = ĈK,�
α,γ (0) = K2

2πα

�
(

1
2α

)
�
(
γ − 1

2α

)
�(γ )

.

As a result, the value of K can be determined from this equation once s2, α, γ are
given. On the other hand, we can rewrite the covariance matrix Γ(θ) = �(α, γ,K, �) as
s2ρ(θ′) = s2ρ(α, γ, �), where ρ(α, γ, �) is the correlation matrix

(
ρK,�

α,γ (i − j)
)N

i,j=1,

ρK,�
α,γ (i − j) = CK,�

α,γ (i − j)

C
K,�
α,γ (0)

,

which is independent of K. Rewriting in the variables α, γ, �, s2, we have

NLL(θ′, s2) = 1

2s2
yT ρ(θ′)−1y +

N

2
log s2 +

1

2
log det ρ(θ) +

N

2
log(2π). (45)

Taking derivative with respect to s2, we find that for fixed θ′ = (α, γ, �), the minimum of
NLL(θ′, s2) appears at

s2 = 1

N
yT ρ(θ′)−1y. (46)

Substituting this into (45), we reduce the problem of finding θ′ to minimize the function

ÑLL(θ′) = N

2
log yT ρ(θ′)−1y +

1

2
log det ρ(θ′) +

N

2
(1 + log(2π) − log(N)), (47)

and s2 is then determined from (46). The fminsearch function in Matlab which uses the
simplex search algorithm by Neldon and Mead [54] is used to identify the minimum of (47).
This algorithm does not involve computation of derivatives. In order to compare the GWM
model with that of WM, we also run the same search with α fix to 1. The results are tabulated
in table 1. It suggests the WM model Ŷ

K,�
1,γ (t) with spectral density

SWM(ω) = 0.5796

2π

1

(ω2 + 0.752)1.02

and the GWM model Ŷ K,�
α,γ (t) with spectral density

SGWM(ω) = 50.9376

2π

1

(|ω|1.03 + 2.821.03)4.12

for the velocity measures. From table 1, we see that the GWM model gives a better value
to ÑLL(θ′). On the other hand, a graphical comparison of the PSD of the WM model and
the GWM model for velocity measures and the empirical PSD (figure 8) also shows that the
GWM model gives a better fit to the velocity measures compared to the WM model especially
in the low frequency region.
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Figure 8. The empirical power spectral density of the velocity measures compared to the PSD
of the WM model and the GWM model with parameters given in table 1, and the corresponding
log–log plot.
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Here we would also like to remark that theoretically, the variogram σ̂ K,�
α,γ (h)2 =〈[

Ŷ K,�
α,γ (t + h) − Ŷ K,�

α,γ (t)
]2〉 = 2

(
ĈK,�

α,γ (0) − ĈK,�
α,γ (h)

)
approaches

2ĈK,�
α,γ (0) = K2

πα

�
(

1
2α

)
�
(
γ − 1

2α

)
�(γ )

as h → ∞. Figure 9 shows the empirical variogram of the velocity measures estimated by

σ̃ 2(h) = 1

N − h

N−h∑
i=1

(yi+h − yi)
2.

The horizontal line gives an estimation of the variance s2 = 0.2964, which is very close to
that estimated by MLE. Figure 10 compares the empirical variogram to the variograms of the
WM model and GWM model for velocity measures.
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Figure 10. The empirical variogram σ̃ 2(h) compared to the variograms of the WM and GWM
models.

6. Concluding remarks

In this paper, we have introduced a new class of the Gaussian random field with covariance
belonging to a generalized Whittle–Matérn family of covariance functions. Some of the basic
properties of this GWM field are studied. Simulations of the GWM covariance and GWM field
in two dimensions are carried out. We also apply this random process to model wind speed.
It is shown that this new random field can provide a more flexible alternative to modeling. In
the future, we would like to extend the application of the GWM field to provide models for
other geostatistical data such as sea beam data, geothermal field temperature and soil data for
which the WM field has been shown to provide a good model [10–14].

Just like its predecessor WM model, the GWM model will find its main applications
in geostatistics. However, one expects it can have potential applications in modeling short
range dependent process such as coding regions of DNA sequences and fluctuations of an
electropore of nano size [55–60]. It will also be interesting to consider its applications in
modeling fractional diffusion and fractional anomalous diffusion [61–67]. This later aspect
is being considered elsewhere. For d = 2, GWM may serve as a model to two-dimensional
images arising in biology, chemistry and physics, in addition to those from geological
and environmental images. The advances in imaging techniques allow better analysis of
morphology of various material surfaces. Various spatial statistical and morphological
methods are available to analyze the patterns of the surface of complex materials, hence
the characterization of their physical properties. Examples of data that can be modeled by the
random field include the concentration of particular component in a liquid or solid sample,
properties such as porosity, permeability, conductivity, absorptivity, emissivity, etc of the
material samples. Although applications of spatial models to statistical physics are still quite
limited, some recent efforts have been made in [68–70]. One expects the GWM model also
has such potential applications. In particular, as a correlation model, the GWM model is
useful in the modeling of morphological structure of complex material with spatial correlation
that is short ranged, that is, its underlying physical process is weakly correlated or weakly
coupled over finite spatial or temporal scales. Readers can consult [71] for recent advances
and applications of spatial models in physics, in particular statistical physics and astrophysics.
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For modeling of data which may have correlation with time- or space-dependent memory
parameter or smoothness parameter, it is necessary to consider the GWM field Yα,γ (t) with
α and γ replaced by α(t) > 0 and γ (t) > 0, with α(t)γ (t) > n/2. A GWM field with
two variable fractional indices can be studied in a similar way like the fractional Riesz–Bessel
field with variable order [30]. In fact, when n = 1 and α = 1, such a generalization has been
considered in [53] where it is called the Weyl multifractional Ornstein–Uhlenbeck process.
Another possible extension is the anisotropic counterpart of the GWM field whose covariance
is a product of GWM processes.
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Appendix. Derivations of formulae (26) and (31)

1. We want to prove equation (25) when αγ ∈ (
n
2 , n+2

2

)
. Using the regularization method, we

have

I = lim
a→0+

{∫ ∞

0

J n−2
2

(k)k
n
2

(k2 + a2)αγ
dk − 1

2
n−2

2 �
(

n
2

) ∫ ∞

0

kn−1 dk

(k2 + a2)αγ

}
.

Applying the formulae #6.565, no. 4 and #3.251, no. 11 of [39], we find that

I = lim
a→0+

{
a

n
2 −αγ

2αγ−1�(αγ )
Kαγ− n

2
(a) − an−2αγ

2
n
2

�
(
αγ − n

2

)
�(αγ )

}
.

Now the formulae #8.485 and #8.445 of [39] give

Kν(z) = K−ν(z) = π

2 sin(πν)

⎧⎨⎩
∞∑

j=0

(z/2)2j−ν

j !�(j + 1 − ν)
−

∞∑
j=0

(z/2)2j+ν

j !�(j + 1 + ν)

⎫⎬⎭ , (A.1)

when ν ∈ (0, 1), which allow us to conclude that

I = − π

22αγ− n
2 sin

[
π
(
αγ − n

2

)] 1

�(αγ )�
(
αγ − n

2 + 1
) = �

(
n
2 − αγ

)
22αγ− n

2 �(αγ )
.

2. We want to prove equation (31) when αγ = n+2
2 . Using (28), we can write I (t) as the sum

of I1(t) and I2(t), where

I1(t) =
∫ 1

0

(
J n−2

2
(k)

k
n−2

2

− 1

2
n−2

2 �
(

n
2

) +
k2

2
n+2

2 �
(

n+2
2

)) kn−1

(k2α + λ2|t|2α)γ
dk

+
∫ ∞

1

(
J n−2

2
(k)

k
n−2

2

− 1

2
n−2

2 �
(

n
2

)) kn−1

(k2α + λ2|t|2α)γ
dk

has a finite limit I1(0) as |t| → 0, and

I2(t) := I (t) − I1(t) = − 1

2
n+2

2 �
(

n+2
2

) ∫ 1

0

kn+1

(k2α + λ2|t|2α)γ
dk.
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By making a change of variable k 
→ k1/(2α), we have

I2(t) = − 1

2
n+4

2 α�
(

n+2
2

) ∫ 1

0

kγ−1 dk

(k + λ2|t|2α)γ
.

From this, we find that I2(t) can be written as a sum of I3(t) and I4(t), where

I3(t) = − 1

2
n+4

2 α�
(

n+2
2

) ∫ 1

0

{
kγ−1

(k + λ2|t|2α)γ
− 1

k + λ2|t|2α

}
dk

has a finite limit I3(0) when |t| → 0, and

I4(t) := I2(t) − I3(t) = − 1

2
n+4

2 α�
(

n+2
2

) ∫ 1

0

1

k + λ2|t|2α
dk

= − 1

2
n+4

2 α�
(

n+2
2

) log
1 + λ2|t|2α

λ2|t|2α

= − 1

2
n+2

2 �
(

n+2
2

) log
1

|t| +
1

2
n+4

2 α�
(

n+2
2

) log λ2 + o(1).

Therefore, we have shown that

I (t) = − 1

2
n+2

2 �
(

n+2
2

) log
1

|t| + A + o(1),

where

A = I1(0) + I3(0) +
1

2
n+4

2 α�
(

n+2
2

) log λ2.
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